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ABSTRACT.  Collaborative work with H.-W. Reinhardt on the capillary absorption of water
and organic liquids is described briefly.  The Sharp Front model of water absorption is
discussed as a basis for modelling 2-dimensional flows in porous building elements.
Examples of solutions obtained by conformal mapping illustrate the usefulness of the
Schwarz-Christoffel transformation.
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1.  Contrasting liquids

I met Hans-Wolf Reinhardt for the first time at an American Ceramic Society
symposium in Washington DC in 1990. At the end of a lecture [REI 92] on the
transport properties of concrete, he took just a moment to mention some new results
on the rates of capillary absorption of organic liquids (work done with his students
Massimo Sosoro and Michael Aufrecht). These were of particular interest to me.
With Bill Hoff and Bob Gummerson, I had done similar measurements [GUM 80] in
Manchester some years before on several brick ceramics (of the common inorganic
building materials these are the most inert, even if not totally so). We had found that
to good accuracy the sorptivities of each brick material measured with several
organic liquids (we had used two alcohols, a hydrocarbon and an ester) and with
water were proportional to (σ/η)1/2. Here σ is the surface tension and η is the
viscosity of the liquid. This scaling relationship told us that the absorption is a pure
capillarity process and that the pore structure of the brick matrix is unchanged by
contact with different liquids. At about the same time, V. Beltrán [BEL 88, BEL 91]
measured capillary absorption rates with great care in a number of tile ceramics.
These results led to the same conclusion. Analysis of Reinhardt's data showed, in
contrast, that for his cement-based materials this simple scaling held for the organic
liquids as a group but that water was distinctly anomalous. The rate of capillary
absorption of water was lower than expected by a factor of 1.5 or 2. Sarah Taylor
and Moira Wilson in Hoff's group at UMIST then acquired some further data on a
series of well-characterised cement mortars. These results confirmed the water
anomaly.

The interpretation, supported by ESEM observations from Athene Donald and
Paul Meredith at the Cavendish Laboratory in Cambridge and also by direct
measurement of wetting strain, was that there was a rapid expansion or rehydration
whenever dried cementititous materials were exposed to water. No such chemical
interaction occurred with the organic liquids. Explained in this way, the cause of the
water anomaly lies in microstructural instability rather than partial wettability. The
outcome of various efforts was a joint publication [HAL 95] with Reinhardt on the
water anomaly. The work provided a new perspective on water transport in
cementitious materials, and affirmed the value of comparing the transport of
different fluids. The clear demonstration of the strong chemical (one might say
chemomechanical ) interaction of water and dry concrete which invariably occurs in
the early stages of water transport was one of the most important results to come out
of the efforts of RILEM Technical Committee TC-146 on the barrier properties of
concrete, chaired and guided by Reinhardt [REI 97].

I think that Reinhardt's passionate interest in structural materials is
fundamentally an engineer's interest. His scientific fascination for the physics and
chemistry of these materials is evident but it is subordinate to the pleasure of
innovative engineering and useful design. In the future, when the transport processes
are understood completely and the material properties are all measured and tabulated
in the great book of data, the need will remain for methods of engineering



calculation and modelling to allow us to predict water flows in building elements,
often composite and geometrically complicated. In what follows, a contribution
dedicated to Hans-Wolf Reinhardt, I deal with one aspect of this task, namely the
modelling of capillary flows in 2-dimensional regions.

2.  Sharp Front model of water absorption

The movement of water in porous structures such as brick and stone masonry
and concrete building elements may be driven by external pressures or by the
internal action of capillary forces or by combinations of the two [HAL 94]. When we
wish to predict or model the penetration of water into an initially dry structure, we
have to deal with a complicated transport process usually dominated by capillarity.
The local transport of water is described by the extended Darcy equation u = −K∇Ψ
where Ψ is the capillary or hydraulic potential and K is the hydraulic conductivity.
Both Ψ and K depend strongly on the local water content θ. When combined with
the continuity equation, we obtain the full non-linear diffusion formulation of
unsaturated flow. However, to apply this equation to all but the simplest situations
requires a numerical solution.

The Sharp Front model [HAL 81] offers an alternative approach which has been
found useful in many cases.  Here we approximate the diffuse capillary fringe which
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Figure 1. Capillary water absorption into the semi-infinite one-dimensional
porous solid: the Sharp Front model.
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Figure 1. Capillary water absorption into the semi-infinite one-dimensional
porous solid: the Sharp Front model.



marks the transition between the wetted and dry regions by a sharp well-defined
boundary, which we call the sharp front (or the sharp wet front in earlier
publications). Thus in Figure 1 we have the Sharp Front (SF) representation of
unidirectional water absorption into an initially dry material. The wet front is
characterised by a wet front capillary potential Ψf which is constant (P0 in Figure 1
is the external pressure, commonly atmospheric pressure). The wetted region
between the inflow surface and the front is assumed to have a constant water content
θs close to saturation and therefore a constant hydraulic conductivity K(θs) close to
the conventional permeability Ks. Since the moisture content at points within the
wetted region does not change with time, we have ∇θ = 0, ∇u = 0 and therefore ∇2Ψ
= 0, which is Laplace's equation. In the 1-dimensional semi-infinite geometry of
Figure 1, we can solve this trivially to obtain the amount of absorbed liquid (or
cumulative absorption) as a function of time: i = (−2fKsΨf)t

1/2  = St1/2, where f is the
volume fraction porosity of the material and S is its sorptivity. There is a viscous
pressure drop which varies linearly from the inflow surface to the wetting front. In
2- and 3-dimensional systems, the wetted field is likewise obtained as a solution of
Laplace’s equation, with Ψ = Ψf on the advancing wet front (or dry boundary) and
Ψ = 0  on the inflow surfaces.  There may be no-flow boundaries elsewhere.

3. Conformal mappings

Conformal mapping is a powerful technique for solving certain boundary value
problems by the use of geometrical transformations in the complex plane [BEA 72,
CHU 60, NEE 97]. It is especially useful in finding solutions to Laplace's equation in
two dimensions1, since any solution remains a solution under conformal mapping. A
suitable transformation can therefore be used to map a known solution in a simple
geometry to another geometry of interest. I shall illustrate this with three examples.

First, and briefly:  some years ago we showed [HAL 81] how the simple one-
dimensional solution just given can be mapped by means of the transformation z →
w = (L/2)sin(πz/L) to give the solution to the important case of Sharp Front water
absorption from a line source (or equally a strip source), as shown in Figure 2. On
the left, water is absorbed through  the line A1B1 of length πL/2 which maps to the
strip A1B1 of length L on the right. The linearly spaced isopotentials on the left map
to the semi-ellipses on the right. The wet front spreads laterally from the source; and
at long times the distribution tends as it must to a semicircle. The streamlines (not
shown), which are orthogonal to the isopotentials and which are parallel and equally
spaced in the rectangle, map to confocal hyperbolae on the right, showing that the
flow is strongly divergent and at long times is radial. The total flow between
corresponding streamlines is unchanged on transformation, so that we can calculate
the flow through the inflow surface as the wet front advances. Thus we can obtain an
analytical expression for the cumulative absorption from the line source. This

                                                          
1 But not in three dimensions, since there are no “spatial” complex numbers [NEE

97].



mapping provides an exact SF solution to two dimensional water absorption from a
finite source applied to an extended flat surface, useful in understanding several
well-known site test methods (not least the ISAT) [HAL 89], and also water
absorption through leaks and cracks.

 A large number of such analytical transformations is known; a useful set is
given by Churchill [CHU 60].

4. Schwarz-Christoffel mapping

Many cases that arise in building structures involve water absorption into
elements defined by straight boundaries in rectilinear or polygonal shapes. The
Schwarz-Christoffel formula2 provides a general mapping algorithm for
transforming polygonal regions of arbitrary shape into simple forms such as the unit
disk, strip or rectangle. This formula is difficult to use analytically for anything but
the simplest shapes, but thanks to recent developments in numerical methods [TRE

80, DRI 96] it is now possible to compute easily the Schwarz-Christoffel solution to
problems in most polygonal geometries.

                                                          
2  The German mathematicians E B Christoffel (1829-1900) and K H A Schwarz
(1843-1921) discovered the transformation formula independently in the late 1860s.

Figure 2.  Capillary absorption of water from a line source into the half-plane;
solution by conformal mapping.
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Figure 2.  Capillary absorption of water from a line source into the half-plane;
solution by conformal mapping.
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A simple example is provided by an interesting water transport question which I
call the Massaris' problem. In their wide-ranging practical book on damp buildings
[MAS 93] G. and I. Massari ask how the water absorption of a porous material (for
example the rise of moisture within a wall) is diminished by reducing the area of the
base in contact with the source of water. They investigate this by means of a simple
table-top experiment in which they compare the rates of capillary rise into three
bricks, two of which have been sawn to reduce the areas of their header faces, as
shown in  Figure 3.
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Figure 3. Flow in Massari geometry by Schwarz-Christoffel mapping from a
rectangle (half-bricks are shown).



Capillary water flow into the intact brick is as shown on the left (we can entirely
neglect the influence of gravitational drainage over the small heights involved here).
The rectangular flow mesh (vertical equally spaced streamlines and an orthogonal
set of isopotentials) is of course the solution to the flow in the simple one-
dimensional case already shown in Figure 1. The Massaris' problem is amenable to
solution by the Schwarz-Christoffel mapping and we show the result in the other
two parts of Figure 3.  Of course the whole of the progress of the wet front up the
leg BCDE is strictly and simply one-dimensional. When the front reaches BD the
streamlines swing sharply towards FG and we have a locally elliptical front near the
corner E. At higher levels, the front again becomes more or less horizontal and the
streamlines arrange themselves once again parallel to BA and FG.

The Massaris’ used their experiment to demonstrate that reducing the inflow area
greatly extends the time it takes for water to rise to the top of the brick: by a factor
of about 7 in the case shown on the right, where the area of the header face in
contact with water is reduced by two-thirds. (This experimental result incidentally is
confirmed by numerical simulation using unsaturated flow theory).  However, the
usefulness of this fact is tempered by a second conclusion: that the rate of
absorption when the wet front approaches the top of the brick is similar in all three
cases. The absorption rates are in the ratio 1 : 0.89 : 0.70. (The rates of absorption
are inversely proportional to the conformal modulus of the Schwarz-Christoffel
rectangle.) As the height of rise increases, so the absorption rates converge towards a
common value. The higher the wet front travels, the smaller the influence of the
hydraulic impedance imposed by the small inflow surface. In most damp buildings,
we have a slow, steady (or roughly steady) flow from a source of moisture to a
drying surface, and in such cases it is the hydraulic impedance of  the entire path,
not the local characteristics of the source, that determines the flow.

The Schwarz-Christoffel method provides also a ready solution to the problem of
predicting capillary water penetration into structural elements of more complicated
section. For example, water absorption from the face of the lower flange of a
concrete I-beam section can be computed using the Schwarz-Christoffel mapping
shown in Figure 4. Here DE is the wetted face. We impose a constant potential Ψf at
the faces AB and BC (representing an evaporation boundary condition for instance).
The flow is depicted by the mesh mapped from the Schwarz-Christoffel rectangle
(Figure 4). This flow mesh is of course the same as the saturated flow in the same
geometry (for example if there were an external pressure head on DE and a lower
pressure on ABC).

Acknowledgments

 I thank W D Hoff and his students, who have generously shared both ideas and
data with me over many years.



A

B

C

D E

Figure 4. Capillary flow of water in a concrete I-beam (the left half of the
beam only is shown), with saturated conditions on DE and free evaporation on
ABC: Sharp Front solution by Schwarz-Christoffel mapping.
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